Metamath Proof Explorer


Theorem strb

Description: Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses str.1
|- A e. CH
str.2
|- B e. CH
Assertion strb
|- ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> A C_ B )

Proof

Step Hyp Ref Expression
1 str.1
 |-  A e. CH
2 str.2
 |-  B e. CH
3 1 2 stri
 |-  ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) -> A C_ B )
4 1 2 stlesi
 |-  ( f e. States -> ( A C_ B -> ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) )
5 4 com12
 |-  ( A C_ B -> ( f e. States -> ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) )
6 5 ralrimiv
 |-  ( A C_ B -> A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) )
7 3 6 impbii
 |-  ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> A C_ B )