Description: Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | str.1 | |- A e. CH |
|
str.2 | |- B e. CH |
||
Assertion | strb | |- ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> A C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | str.1 | |- A e. CH |
|
2 | str.2 | |- B e. CH |
|
3 | 1 2 | stri | |- ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) -> A C_ B ) |
4 | 1 2 | stlesi | |- ( f e. States -> ( A C_ B -> ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) ) |
5 | 4 | com12 | |- ( A C_ B -> ( f e. States -> ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) ) |
6 | 5 | ralrimiv | |- ( A C_ B -> A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) ) |
7 | 3 6 | impbii | |- ( A. f e. States ( ( f ` A ) = 1 -> ( f ` B ) = 1 ) <-> A C_ B ) |