Description: Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | str.1 | ⊢ 𝐴 ∈ Cℋ | |
str.2 | ⊢ 𝐵 ∈ Cℋ | ||
Assertion | strb | ⊢ ( ∀ 𝑓 ∈ States ( ( 𝑓 ‘ 𝐴 ) = 1 → ( 𝑓 ‘ 𝐵 ) = 1 ) ↔ 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | str.1 | ⊢ 𝐴 ∈ Cℋ | |
2 | str.2 | ⊢ 𝐵 ∈ Cℋ | |
3 | 1 2 | stri | ⊢ ( ∀ 𝑓 ∈ States ( ( 𝑓 ‘ 𝐴 ) = 1 → ( 𝑓 ‘ 𝐵 ) = 1 ) → 𝐴 ⊆ 𝐵 ) |
4 | 1 2 | stlesi | ⊢ ( 𝑓 ∈ States → ( 𝐴 ⊆ 𝐵 → ( ( 𝑓 ‘ 𝐴 ) = 1 → ( 𝑓 ‘ 𝐵 ) = 1 ) ) ) |
5 | 4 | com12 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑓 ∈ States → ( ( 𝑓 ‘ 𝐴 ) = 1 → ( 𝑓 ‘ 𝐵 ) = 1 ) ) ) |
6 | 5 | ralrimiv | ⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑓 ∈ States ( ( 𝑓 ‘ 𝐴 ) = 1 → ( 𝑓 ‘ 𝐵 ) = 1 ) ) |
7 | 3 6 | impbii | ⊢ ( ∀ 𝑓 ∈ States ( ( 𝑓 ‘ 𝐴 ) = 1 → ( 𝑓 ‘ 𝐵 ) = 1 ) ↔ 𝐴 ⊆ 𝐵 ) |