Metamath Proof Explorer


Theorem strb

Description: Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses str.1 𝐴C
str.2 𝐵C
Assertion strb ( ∀ 𝑓 ∈ States ( ( 𝑓𝐴 ) = 1 → ( 𝑓𝐵 ) = 1 ) ↔ 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 str.1 𝐴C
2 str.2 𝐵C
3 1 2 stri ( ∀ 𝑓 ∈ States ( ( 𝑓𝐴 ) = 1 → ( 𝑓𝐵 ) = 1 ) → 𝐴𝐵 )
4 1 2 stlesi ( 𝑓 ∈ States → ( 𝐴𝐵 → ( ( 𝑓𝐴 ) = 1 → ( 𝑓𝐵 ) = 1 ) ) )
5 4 com12 ( 𝐴𝐵 → ( 𝑓 ∈ States → ( ( 𝑓𝐴 ) = 1 → ( 𝑓𝐵 ) = 1 ) ) )
6 5 ralrimiv ( 𝐴𝐵 → ∀ 𝑓 ∈ States ( ( 𝑓𝐴 ) = 1 → ( 𝑓𝐵 ) = 1 ) )
7 3 6 impbii ( ∀ 𝑓 ∈ States ( ( 𝑓𝐴 ) = 1 → ( 𝑓𝐵 ) = 1 ) ↔ 𝐴𝐵 )