Metamath Proof Explorer


Theorem strb

Description: Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypotheses str.1 AC
str.2 BC
Assertion strb fStatesfA=1fB=1AB

Proof

Step Hyp Ref Expression
1 str.1 AC
2 str.2 BC
3 1 2 stri fStatesfA=1fB=1AB
4 1 2 stlesi fStatesABfA=1fB=1
5 4 com12 ABfStatesfA=1fB=1
6 5 ralrimiv ABfStatesfA=1fB=1
7 3 6 impbii fStatesfA=1fB=1AB