Metamath Proof Explorer


Theorem strlem6

Description: Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses strlem3.1 S=xCnormprojxu2
strlem3.2 φuABnormu=1
strlem3.3 AC
strlem3.4 BC
Assertion strlem6 φ¬SA=1SB=1

Proof

Step Hyp Ref Expression
1 strlem3.1 S=xCnormprojxu2
2 strlem3.2 φuABnormu=1
3 strlem3.3 AC
4 strlem3.4 BC
5 1 2 3 4 strlem4 φSA=1
6 1 2 3 4 strlem3 φSStates
7 stcl SStatesBCSB
8 6 4 7 mpisyl φSB
9 1 2 3 4 strlem5 φSB<1
10 8 9 ltned φSB1
11 10 neneqd φ¬SB=1
12 5 11 jcnd φ¬SA=1SB=1