Metamath Proof Explorer


Theorem strlem6

Description: Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses strlem3.1
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
strlem3.2
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
strlem3.3
|- A e. CH
strlem3.4
|- B e. CH
Assertion strlem6
|- ( ph -> -. ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) )

Proof

Step Hyp Ref Expression
1 strlem3.1
 |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) )
2 strlem3.2
 |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) )
3 strlem3.3
 |-  A e. CH
4 strlem3.4
 |-  B e. CH
5 1 2 3 4 strlem4
 |-  ( ph -> ( S ` A ) = 1 )
6 1 2 3 4 strlem3
 |-  ( ph -> S e. States )
7 stcl
 |-  ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) )
8 6 4 7 mpisyl
 |-  ( ph -> ( S ` B ) e. RR )
9 1 2 3 4 strlem5
 |-  ( ph -> ( S ` B ) < 1 )
10 8 9 ltned
 |-  ( ph -> ( S ` B ) =/= 1 )
11 10 neneqd
 |-  ( ph -> -. ( S ` B ) = 1 )
12 5 11 jcnd
 |-  ( ph -> -. ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) )