| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem3.1 |  |-  S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) | 
						
							| 2 |  | strlem3.2 |  |-  ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) | 
						
							| 3 |  | strlem3.3 |  |-  A e. CH | 
						
							| 4 |  | strlem3.4 |  |-  B e. CH | 
						
							| 5 | 1 2 3 4 | strlem4 |  |-  ( ph -> ( S ` A ) = 1 ) | 
						
							| 6 | 1 2 3 4 | strlem3 |  |-  ( ph -> S e. States ) | 
						
							| 7 |  | stcl |  |-  ( S e. States -> ( B e. CH -> ( S ` B ) e. RR ) ) | 
						
							| 8 | 6 4 7 | mpisyl |  |-  ( ph -> ( S ` B ) e. RR ) | 
						
							| 9 | 1 2 3 4 | strlem5 |  |-  ( ph -> ( S ` B ) < 1 ) | 
						
							| 10 | 8 9 | ltned |  |-  ( ph -> ( S ` B ) =/= 1 ) | 
						
							| 11 | 10 | neneqd |  |-  ( ph -> -. ( S ` B ) = 1 ) | 
						
							| 12 | 5 11 | jcnd |  |-  ( ph -> -. ( ( S ` A ) = 1 -> ( S ` B ) = 1 ) ) |