Step |
Hyp |
Ref |
Expression |
1 |
|
strlem3.1 |
|- S = ( x e. CH |-> ( ( normh ` ( ( projh ` x ) ` u ) ) ^ 2 ) ) |
2 |
|
strlem3.2 |
|- ( ph <-> ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) ) |
3 |
|
strlem3.3 |
|- A e. CH |
4 |
|
strlem3.4 |
|- B e. CH |
5 |
1
|
strlem2 |
|- ( B e. CH -> ( S ` B ) = ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) ) |
6 |
4 5
|
ax-mp |
|- ( S ` B ) = ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) |
7 |
|
eldif |
|- ( u e. ( A \ B ) <-> ( u e. A /\ -. u e. B ) ) |
8 |
3
|
cheli |
|- ( u e. A -> u e. ~H ) |
9 |
|
pjnel |
|- ( ( B e. CH /\ u e. ~H ) -> ( -. u e. B <-> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) ) |
10 |
4 9
|
mpan |
|- ( u e. ~H -> ( -. u e. B <-> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) ) |
11 |
10
|
biimpa |
|- ( ( u e. ~H /\ -. u e. B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) |
12 |
8 11
|
sylan |
|- ( ( u e. A /\ -. u e. B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) |
13 |
7 12
|
sylbi |
|- ( u e. ( A \ B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) ) |
14 |
|
breq2 |
|- ( ( normh ` u ) = 1 -> ( ( normh ` ( ( projh ` B ) ` u ) ) < ( normh ` u ) <-> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) ) |
15 |
13 14
|
syl5ib |
|- ( ( normh ` u ) = 1 -> ( u e. ( A \ B ) -> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) ) |
16 |
15
|
impcom |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( normh ` ( ( projh ` B ) ` u ) ) < 1 ) |
17 |
|
eldifi |
|- ( u e. ( A \ B ) -> u e. A ) |
18 |
4
|
pjhcli |
|- ( u e. ~H -> ( ( projh ` B ) ` u ) e. ~H ) |
19 |
|
normcl |
|- ( ( ( projh ` B ) ` u ) e. ~H -> ( normh ` ( ( projh ` B ) ` u ) ) e. RR ) |
20 |
18 19
|
syl |
|- ( u e. ~H -> ( normh ` ( ( projh ` B ) ` u ) ) e. RR ) |
21 |
|
normge0 |
|- ( ( ( projh ` B ) ` u ) e. ~H -> 0 <_ ( normh ` ( ( projh ` B ) ` u ) ) ) |
22 |
18 21
|
syl |
|- ( u e. ~H -> 0 <_ ( normh ` ( ( projh ` B ) ` u ) ) ) |
23 |
|
1re |
|- 1 e. RR |
24 |
|
0le1 |
|- 0 <_ 1 |
25 |
|
lt2sq |
|- ( ( ( ( normh ` ( ( projh ` B ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` B ) ` u ) ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( normh ` ( ( projh ` B ) ` u ) ) < 1 <-> ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
26 |
23 24 25
|
mpanr12 |
|- ( ( ( normh ` ( ( projh ` B ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` B ) ` u ) ) ) -> ( ( normh ` ( ( projh ` B ) ` u ) ) < 1 <-> ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
27 |
20 22 26
|
syl2anc |
|- ( u e. ~H -> ( ( normh ` ( ( projh ` B ) ` u ) ) < 1 <-> ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
28 |
17 8 27
|
3syl |
|- ( u e. ( A \ B ) -> ( ( normh ` ( ( projh ` B ) ` u ) ) < 1 <-> ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
29 |
28
|
adantr |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( ( normh ` ( ( projh ` B ) ` u ) ) < 1 <-> ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) < ( 1 ^ 2 ) ) ) |
30 |
16 29
|
mpbid |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( ( normh ` ( ( projh ` B ) ` u ) ) ^ 2 ) < ( 1 ^ 2 ) ) |
31 |
6 30
|
eqbrtrid |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( S ` B ) < ( 1 ^ 2 ) ) |
32 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
33 |
31 32
|
breqtrdi |
|- ( ( u e. ( A \ B ) /\ ( normh ` u ) = 1 ) -> ( S ` B ) < 1 ) |
34 |
2 33
|
sylbi |
|- ( ph -> ( S ` B ) < 1 ) |