| Step | Hyp | Ref | Expression | 
						
							| 1 |  | strlem3.1 | ⊢ 𝑆  =  ( 𝑥  ∈   Cℋ   ↦  ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 2 |  | strlem3.2 | ⊢ ( 𝜑  ↔  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 ) ) | 
						
							| 3 |  | strlem3.3 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 4 |  | strlem3.4 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 5 | 1 | strlem2 | ⊢ ( 𝐵  ∈   Cℋ   →  ( 𝑆 ‘ 𝐵 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( 𝑆 ‘ 𝐵 )  =  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) | 
						
							| 7 |  | eldif | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ∈  𝐵 ) ) | 
						
							| 8 | 3 | cheli | ⊢ ( 𝑢  ∈  𝐴  →  𝑢  ∈   ℋ ) | 
						
							| 9 |  | pjnel | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝑢  ∈   ℋ )  →  ( ¬  𝑢  ∈  𝐵  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 10 | 4 9 | mpan | ⊢ ( 𝑢  ∈   ℋ  →  ( ¬  𝑢  ∈  𝐵  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 11 | 10 | biimpa | ⊢ ( ( 𝑢  ∈   ℋ  ∧  ¬  𝑢  ∈  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) | 
						
							| 12 | 8 11 | sylan | ⊢ ( ( 𝑢  ∈  𝐴  ∧  ¬  𝑢  ∈  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) | 
						
							| 13 | 7 12 | sylbi | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 ) ) | 
						
							| 14 |  | breq2 | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  ( normℎ ‘ 𝑢 )  ↔  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1 ) ) | 
						
							| 15 | 13 14 | imbitrid | ⊢ ( ( normℎ ‘ 𝑢 )  =  1  →  ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1 ) ) | 
						
							| 16 | 15 | impcom | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1 ) | 
						
							| 17 |  | eldifi | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  𝑢  ∈  𝐴 ) | 
						
							| 18 | 4 | pjhcli | ⊢ ( 𝑢  ∈   ℋ  →  ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 )  ∈   ℋ ) | 
						
							| 19 |  | normcl | ⊢ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 )  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝑢  ∈   ℋ  →  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  ∈  ℝ ) | 
						
							| 21 |  | normge0 | ⊢ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) | 
						
							| 22 | 18 21 | syl | ⊢ ( 𝑢  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) | 
						
							| 23 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 24 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 25 |  | lt2sq | ⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) )  ∧  ( 1  ∈  ℝ  ∧  0  ≤  1 ) )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 )  <  ( 1 ↑ 2 ) ) ) | 
						
							| 26 | 23 24 25 | mpanr12 | ⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 )  <  ( 1 ↑ 2 ) ) ) | 
						
							| 27 | 20 22 26 | syl2anc | ⊢ ( 𝑢  ∈   ℋ  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 )  <  ( 1 ↑ 2 ) ) ) | 
						
							| 28 | 17 8 27 | 3syl | ⊢ ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 )  <  ( 1 ↑ 2 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) )  <  1  ↔  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 )  <  ( 1 ↑ 2 ) ) ) | 
						
							| 30 | 16 29 | mpbid | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 )  <  ( 1 ↑ 2 ) ) | 
						
							| 31 | 6 30 | eqbrtrid | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑆 ‘ 𝐵 )  <  ( 1 ↑ 2 ) ) | 
						
							| 32 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 33 | 31 32 | breqtrdi | ⊢ ( ( 𝑢  ∈  ( 𝐴  ∖  𝐵 )  ∧  ( normℎ ‘ 𝑢 )  =  1 )  →  ( 𝑆 ‘ 𝐵 )  <  1 ) | 
						
							| 34 | 2 33 | sylbi | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝐵 )  <  1 ) |