Step |
Hyp |
Ref |
Expression |
1 |
|
strlem3.1 |
⊢ 𝑆 = ( 𝑥 ∈ Cℋ ↦ ( ( normℎ ‘ ( ( projℎ ‘ 𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
2 |
|
strlem3.2 |
⊢ ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) ) |
3 |
|
strlem3.3 |
⊢ 𝐴 ∈ Cℋ |
4 |
|
strlem3.4 |
⊢ 𝐵 ∈ Cℋ |
5 |
1
|
strlem2 |
⊢ ( 𝐵 ∈ Cℋ → ( 𝑆 ‘ 𝐵 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) ) |
6 |
4 5
|
ax-mp |
⊢ ( 𝑆 ‘ 𝐵 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) |
7 |
|
eldif |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵 ) ) |
8 |
3
|
cheli |
⊢ ( 𝑢 ∈ 𝐴 → 𝑢 ∈ ℋ ) |
9 |
|
pjnel |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝑢 ∈ ℋ ) → ( ¬ 𝑢 ∈ 𝐵 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) ) |
10 |
4 9
|
mpan |
⊢ ( 𝑢 ∈ ℋ → ( ¬ 𝑢 ∈ 𝐵 ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝑢 ∈ ℋ ∧ ¬ 𝑢 ∈ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) |
12 |
8 11
|
sylan |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ∈ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) |
13 |
7 12
|
sylbi |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ) |
14 |
|
breq2 |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < ( normℎ ‘ 𝑢 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ) ) |
15 |
13 14
|
syl5ib |
⊢ ( ( normℎ ‘ 𝑢 ) = 1 → ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ) ) |
16 |
15
|
impcom |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ) |
17 |
|
eldifi |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → 𝑢 ∈ 𝐴 ) |
18 |
4
|
pjhcli |
⊢ ( 𝑢 ∈ ℋ → ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ∈ ℋ ) |
19 |
|
normcl |
⊢ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( 𝑢 ∈ ℋ → ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ∈ ℝ ) |
21 |
|
normge0 |
⊢ ( ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) |
22 |
18 21
|
syl |
⊢ ( 𝑢 ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) |
23 |
|
1re |
⊢ 1 ∈ ℝ |
24 |
|
0le1 |
⊢ 0 ≤ 1 |
25 |
|
lt2sq |
⊢ ( ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
26 |
23 24 25
|
mpanr12 |
⊢ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
27 |
20 22 26
|
syl2anc |
⊢ ( 𝑢 ∈ ℋ → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
28 |
17 8 27
|
3syl |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) < 1 ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) ) |
30 |
16 29
|
mpbid |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐵 ) ‘ 𝑢 ) ) ↑ 2 ) < ( 1 ↑ 2 ) ) |
31 |
6 30
|
eqbrtrid |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑆 ‘ 𝐵 ) < ( 1 ↑ 2 ) ) |
32 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
33 |
31 32
|
breqtrdi |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ 𝐵 ) ∧ ( normℎ ‘ 𝑢 ) = 1 ) → ( 𝑆 ‘ 𝐵 ) < 1 ) |
34 |
2 33
|
sylbi |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) < 1 ) |