Metamath Proof Explorer


Theorem strlem6

Description: Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999) (New usage is discouraged.)

Ref Expression
Hypotheses strlem3.1 𝑆 = ( 𝑥C ↦ ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) )
strlem3.2 ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴𝐵 ) ∧ ( norm𝑢 ) = 1 ) )
strlem3.3 𝐴C
strlem3.4 𝐵C
Assertion strlem6 ( 𝜑 → ¬ ( ( 𝑆𝐴 ) = 1 → ( 𝑆𝐵 ) = 1 ) )

Proof

Step Hyp Ref Expression
1 strlem3.1 𝑆 = ( 𝑥C ↦ ( ( norm ‘ ( ( proj𝑥 ) ‘ 𝑢 ) ) ↑ 2 ) )
2 strlem3.2 ( 𝜑 ↔ ( 𝑢 ∈ ( 𝐴𝐵 ) ∧ ( norm𝑢 ) = 1 ) )
3 strlem3.3 𝐴C
4 strlem3.4 𝐵C
5 1 2 3 4 strlem4 ( 𝜑 → ( 𝑆𝐴 ) = 1 )
6 1 2 3 4 strlem3 ( 𝜑𝑆 ∈ States )
7 stcl ( 𝑆 ∈ States → ( 𝐵C → ( 𝑆𝐵 ) ∈ ℝ ) )
8 6 4 7 mpisyl ( 𝜑 → ( 𝑆𝐵 ) ∈ ℝ )
9 1 2 3 4 strlem5 ( 𝜑 → ( 𝑆𝐵 ) < 1 )
10 8 9 ltned ( 𝜑 → ( 𝑆𝐵 ) ≠ 1 )
11 10 neneqd ( 𝜑 → ¬ ( 𝑆𝐵 ) = 1 )
12 5 11 jcnd ( 𝜑 → ¬ ( ( 𝑆𝐴 ) = 1 → ( 𝑆𝐵 ) = 1 ) )