Metamath Proof Explorer


Theorem structgrssiedg

Description: The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020) (Proof shortened by AV, 12-Nov-2021)

Ref Expression
Hypotheses structgrssvtx.g φGStructX
structgrssvtx.v φVY
structgrssvtx.e φEZ
structgrssvtx.s φBasendxVefndxEG
Assertion structgrssiedg φiEdgG=E

Proof

Step Hyp Ref Expression
1 structgrssvtx.g φGStructX
2 structgrssvtx.v φVY
3 structgrssvtx.e φEZ
4 structgrssvtx.s φBasendxVefndxEG
5 1 2 3 4 structgrssvtxlem φ2domG
6 opex BasendxVV
7 opex efndxEV
8 6 7 prss BasendxVGefndxEGBasendxVefndxEG
9 simpr BasendxVGefndxEGefndxEG
10 8 9 sylbir BasendxVefndxEGefndxEG
11 4 10 syl φefndxEG
12 1 5 3 11 edgfiedgval φiEdgG=E