Metamath Proof Explorer


Theorem structtousgr

Description: Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021) (Revised by AV, 17-Nov-2021)

Ref Expression
Hypotheses structtousgr.p P=x𝒫BaseS|x=2
structtousgr.s φSStructX
structtousgr.g G=SsSetefndxIP
structtousgr.b φBasendxdomS
Assertion structtousgr φGUSGraph

Proof

Step Hyp Ref Expression
1 structtousgr.p P=x𝒫BaseS|x=2
2 structtousgr.s φSStructX
3 structtousgr.g G=SsSetefndxIP
4 structtousgr.b φBasendxdomS
5 eqid BaseS=BaseS
6 eqid efndx=efndx
7 fvex BaseSV
8 1 cusgrexilem1 BaseSVIPV
9 7 8 mp1i φIPV
10 1 usgrexilem BaseSVIP:domIP1-1x𝒫BaseS|x=2
11 7 10 mp1i φIP:domIP1-1x𝒫BaseS|x=2
12 5 6 2 4 9 11 usgrstrrepe φSsSetefndxIPUSGraph
13 3 12 eqeltrid φGUSGraph