| Step |
Hyp |
Ref |
Expression |
| 1 |
|
structtousgr.p |
|- P = { x e. ~P ( Base ` S ) | ( # ` x ) = 2 } |
| 2 |
|
structtousgr.s |
|- ( ph -> S Struct X ) |
| 3 |
|
structtousgr.g |
|- G = ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) |
| 4 |
|
structtousgr.b |
|- ( ph -> ( Base ` ndx ) e. dom S ) |
| 5 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 6 |
|
eqid |
|- ( .ef ` ndx ) = ( .ef ` ndx ) |
| 7 |
|
fvex |
|- ( Base ` S ) e. _V |
| 8 |
1
|
cusgrexilem1 |
|- ( ( Base ` S ) e. _V -> ( _I |` P ) e. _V ) |
| 9 |
7 8
|
mp1i |
|- ( ph -> ( _I |` P ) e. _V ) |
| 10 |
1
|
usgrexilem |
|- ( ( Base ` S ) e. _V -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P ( Base ` S ) | ( # ` x ) = 2 } ) |
| 11 |
7 10
|
mp1i |
|- ( ph -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P ( Base ` S ) | ( # ` x ) = 2 } ) |
| 12 |
5 6 2 4 9 11
|
usgrstrrepe |
|- ( ph -> ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) e. USGraph ) |
| 13 |
3 12
|
eqeltrid |
|- ( ph -> G e. USGraph ) |