| Step |
Hyp |
Ref |
Expression |
| 1 |
|
structtousgr.p |
|- P = { x e. ~P ( Base ` S ) | ( # ` x ) = 2 } |
| 2 |
|
structtousgr.s |
|- ( ph -> S Struct X ) |
| 3 |
|
structtousgr.g |
|- G = ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) |
| 4 |
|
structtousgr.b |
|- ( ph -> ( Base ` ndx ) e. dom S ) |
| 5 |
1 2 3 4
|
structtousgr |
|- ( ph -> G e. USGraph ) |
| 6 |
|
simpr |
|- ( ( ph /\ v e. ( Vtx ` G ) ) -> v e. ( Vtx ` G ) ) |
| 7 |
|
eldifi |
|- ( n e. ( ( Vtx ` G ) \ { v } ) -> n e. ( Vtx ` G ) ) |
| 8 |
6 7
|
anim12ci |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> ( n e. ( Vtx ` G ) /\ v e. ( Vtx ` G ) ) ) |
| 9 |
|
eldifsni |
|- ( n e. ( ( Vtx ` G ) \ { v } ) -> n =/= v ) |
| 10 |
9
|
adantl |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> n =/= v ) |
| 11 |
|
fvexd |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> ( Base ` S ) e. _V ) |
| 12 |
3
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) ) |
| 13 |
|
eqid |
|- ( .ef ` ndx ) = ( .ef ` ndx ) |
| 14 |
|
fvex |
|- ( Base ` S ) e. _V |
| 15 |
1
|
cusgrexilem1 |
|- ( ( Base ` S ) e. _V -> ( _I |` P ) e. _V ) |
| 16 |
14 15
|
mp1i |
|- ( ph -> ( _I |` P ) e. _V ) |
| 17 |
13 2 4 16
|
setsvtx |
|- ( ph -> ( Vtx ` ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) ) = ( Base ` S ) ) |
| 18 |
12 17
|
eqtrid |
|- ( ph -> ( Vtx ` G ) = ( Base ` S ) ) |
| 19 |
18
|
eleq2d |
|- ( ph -> ( v e. ( Vtx ` G ) <-> v e. ( Base ` S ) ) ) |
| 20 |
19
|
biimpa |
|- ( ( ph /\ v e. ( Vtx ` G ) ) -> v e. ( Base ` S ) ) |
| 21 |
20
|
adantr |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> v e. ( Base ` S ) ) |
| 22 |
18
|
difeq1d |
|- ( ph -> ( ( Vtx ` G ) \ { v } ) = ( ( Base ` S ) \ { v } ) ) |
| 23 |
22
|
eleq2d |
|- ( ph -> ( n e. ( ( Vtx ` G ) \ { v } ) <-> n e. ( ( Base ` S ) \ { v } ) ) ) |
| 24 |
23
|
biimpd |
|- ( ph -> ( n e. ( ( Vtx ` G ) \ { v } ) -> n e. ( ( Base ` S ) \ { v } ) ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ v e. ( Vtx ` G ) ) -> ( n e. ( ( Vtx ` G ) \ { v } ) -> n e. ( ( Base ` S ) \ { v } ) ) ) |
| 26 |
25
|
imp |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> n e. ( ( Base ` S ) \ { v } ) ) |
| 27 |
1
|
cusgrexilem2 |
|- ( ( ( ( Base ` S ) e. _V /\ v e. ( Base ` S ) ) /\ n e. ( ( Base ` S ) \ { v } ) ) -> E. e e. ran ( _I |` P ) { v , n } C_ e ) |
| 28 |
11 21 26 27
|
syl21anc |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> E. e e. ran ( _I |` P ) { v , n } C_ e ) |
| 29 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 30 |
3
|
fveq2i |
|- ( iEdg ` G ) = ( iEdg ` ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) ) |
| 31 |
13 2 4 16
|
setsiedg |
|- ( ph -> ( iEdg ` ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) ) = ( _I |` P ) ) |
| 32 |
30 31
|
eqtrid |
|- ( ph -> ( iEdg ` G ) = ( _I |` P ) ) |
| 33 |
32
|
rneqd |
|- ( ph -> ran ( iEdg ` G ) = ran ( _I |` P ) ) |
| 34 |
29 33
|
eqtrid |
|- ( ph -> ( Edg ` G ) = ran ( _I |` P ) ) |
| 35 |
34
|
rexeqdv |
|- ( ph -> ( E. e e. ( Edg ` G ) { v , n } C_ e <-> E. e e. ran ( _I |` P ) { v , n } C_ e ) ) |
| 36 |
35
|
ad2antrr |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> ( E. e e. ( Edg ` G ) { v , n } C_ e <-> E. e e. ran ( _I |` P ) { v , n } C_ e ) ) |
| 37 |
28 36
|
mpbird |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> E. e e. ( Edg ` G ) { v , n } C_ e ) |
| 38 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 39 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 40 |
38 39
|
nbgrel |
|- ( n e. ( G NeighbVtx v ) <-> ( ( n e. ( Vtx ` G ) /\ v e. ( Vtx ` G ) ) /\ n =/= v /\ E. e e. ( Edg ` G ) { v , n } C_ e ) ) |
| 41 |
8 10 37 40
|
syl3anbrc |
|- ( ( ( ph /\ v e. ( Vtx ` G ) ) /\ n e. ( ( Vtx ` G ) \ { v } ) ) -> n e. ( G NeighbVtx v ) ) |
| 42 |
41
|
ralrimiva |
|- ( ( ph /\ v e. ( Vtx ` G ) ) -> A. n e. ( ( Vtx ` G ) \ { v } ) n e. ( G NeighbVtx v ) ) |
| 43 |
38
|
uvtxel |
|- ( v e. ( UnivVtx ` G ) <-> ( v e. ( Vtx ` G ) /\ A. n e. ( ( Vtx ` G ) \ { v } ) n e. ( G NeighbVtx v ) ) ) |
| 44 |
6 42 43
|
sylanbrc |
|- ( ( ph /\ v e. ( Vtx ` G ) ) -> v e. ( UnivVtx ` G ) ) |
| 45 |
44
|
ralrimiva |
|- ( ph -> A. v e. ( Vtx ` G ) v e. ( UnivVtx ` G ) ) |
| 46 |
5
|
elexd |
|- ( ph -> G e. _V ) |
| 47 |
38
|
iscplgr |
|- ( G e. _V -> ( G e. ComplGraph <-> A. v e. ( Vtx ` G ) v e. ( UnivVtx ` G ) ) ) |
| 48 |
46 47
|
syl |
|- ( ph -> ( G e. ComplGraph <-> A. v e. ( Vtx ` G ) v e. ( UnivVtx ` G ) ) ) |
| 49 |
45 48
|
mpbird |
|- ( ph -> G e. ComplGraph ) |
| 50 |
|
iscusgr |
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
| 51 |
5 49 50
|
sylanbrc |
|- ( ph -> G e. ComplUSGraph ) |