Description: Any (extensible) structure with a base set can be made a complete simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021) (Revised by AV, 17-Nov-2021) (Proof shortened by AV, 14-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | structtousgr.p | |
|
structtousgr.s | |
||
structtousgr.g | |
||
structtousgr.b | |
||
Assertion | structtocusgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structtousgr.p | |
|
2 | structtousgr.s | |
|
3 | structtousgr.g | |
|
4 | structtousgr.b | |
|
5 | 1 2 3 4 | structtousgr | |
6 | simpr | |
|
7 | eldifi | |
|
8 | 6 7 | anim12ci | |
9 | eldifsni | |
|
10 | 9 | adantl | |
11 | fvexd | |
|
12 | 3 | fveq2i | |
13 | eqid | |
|
14 | fvex | |
|
15 | 1 | cusgrexilem1 | |
16 | 14 15 | mp1i | |
17 | 13 2 4 16 | setsvtx | |
18 | 12 17 | eqtrid | |
19 | 18 | eleq2d | |
20 | 19 | biimpa | |
21 | 20 | adantr | |
22 | 18 | difeq1d | |
23 | 22 | eleq2d | |
24 | 23 | biimpd | |
25 | 24 | adantr | |
26 | 25 | imp | |
27 | 1 | cusgrexilem2 | |
28 | 11 21 26 27 | syl21anc | |
29 | edgval | |
|
30 | 3 | fveq2i | |
31 | 13 2 4 16 | setsiedg | |
32 | 30 31 | eqtrid | |
33 | 32 | rneqd | |
34 | 29 33 | eqtrid | |
35 | 34 | rexeqdv | |
36 | 35 | ad2antrr | |
37 | 28 36 | mpbird | |
38 | eqid | |
|
39 | eqid | |
|
40 | 38 39 | nbgrel | |
41 | 8 10 37 40 | syl3anbrc | |
42 | 41 | ralrimiva | |
43 | 38 | uvtxel | |
44 | 6 42 43 | sylanbrc | |
45 | 44 | ralrimiva | |
46 | 5 | elexd | |
47 | 38 | iscplgr | |
48 | 46 47 | syl | |
49 | 45 48 | mpbird | |
50 | iscusgr | |
|
51 | 5 49 50 | sylanbrc | |