Metamath Proof Explorer


Theorem setsvtx

Description: The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses setsvtx.i I=efndx
setsvtx.s φGStructX
setsvtx.b φBasendxdomG
setsvtx.e φEW
Assertion setsvtx φVtxGsSetIE=BaseG

Proof

Step Hyp Ref Expression
1 setsvtx.i I=efndx
2 setsvtx.s φGStructX
3 setsvtx.b φBasendxdomG
4 setsvtx.e φEW
5 1 fvexi IV
6 5 a1i φIV
7 2 6 4 setsn0fun φFunGsSetIE
8 1 eqcomi efndx=I
9 8 preq2i Basendxefndx=BasendxI
10 2 6 4 3 basprssdmsets φBasendxIdomGsSetIE
11 9 10 eqsstrid φBasendxefndxdomGsSetIE
12 funvtxval FunGsSetIEBasendxefndxdomGsSetIEVtxGsSetIE=BaseGsSetIE
13 7 11 12 syl2anc φVtxGsSetIE=BaseGsSetIE
14 baseid Base=SlotBasendx
15 basendxnedgfndx Basendxefndx
16 15 1 neeqtrri BasendxI
17 14 16 setsnid BaseG=BaseGsSetIE
18 13 17 eqtr4di φVtxGsSetIE=BaseG