Metamath Proof Explorer


Theorem setsiedg

Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses setsvtx.i I=efndx
setsvtx.s φGStructX
setsvtx.b φBasendxdomG
setsvtx.e φEW
Assertion setsiedg φiEdgGsSetIE=E

Proof

Step Hyp Ref Expression
1 setsvtx.i I=efndx
2 setsvtx.s φGStructX
3 setsvtx.b φBasendxdomG
4 setsvtx.e φEW
5 fvexd φefndxV
6 2 5 4 setsn0fun φFunGsSetefndxE
7 2 5 4 3 basprssdmsets φBasendxefndxdomGsSetefndxE
8 funiedgval FunGsSetefndxEBasendxefndxdomGsSetefndxEiEdgGsSetefndxE=efGsSetefndxE
9 6 7 8 syl2anc φiEdgGsSetefndxE=efGsSetefndxE
10 1 opeq1i IE=efndxE
11 10 oveq2i GsSetIE=GsSetefndxE
12 11 fveq2i iEdgGsSetIE=iEdgGsSetefndxE
13 12 a1i φiEdgGsSetIE=iEdgGsSetefndxE
14 structex GStructXGV
15 2 14 syl φGV
16 edgfid ef=Slotefndx
17 16 setsid GVEWE=efGsSetefndxE
18 15 4 17 syl2anc φE=efGsSetefndxE
19 9 13 18 3eqtr4d φiEdgGsSetIE=E