Metamath Proof Explorer


Theorem sub1cncfd

Description: Subtracting a constant is a continuous function. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses sub1cncfd.1 φA
sub1cncfd.2 F=xxA
Assertion sub1cncfd φF:cn

Proof

Step Hyp Ref Expression
1 sub1cncfd.1 φA
2 sub1cncfd.2 F=xxA
3 ssid
4 cncfmptid xx:cn
5 3 3 4 mp2an xx:cn
6 5 a1i φxx:cn
7 3 a1i φ
8 cncfmptc AxA:cn
9 1 7 7 8 syl3anc φxA:cn
10 6 9 subcncf φxxA:cn
11 2 10 eqeltrid φF:cn