Metamath Proof Explorer


Theorem sub32d

Description: Swap the second and third terms in a double subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subaddd.3 φC
Assertion sub32d φA-B-C=A-C-B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subaddd.3 φC
4 sub32 ABCA-B-C=A-C-B
5 1 2 3 4 syl3anc φA-B-C=A-C-B