Metamath Proof Explorer


Theorem subgrtrl

Description: If a trail exists in a subgraph of a graph G , then that trail also exists in G . (Contributed by BTernaryTau, 22-Oct-2023)

Ref Expression
Assertion subgrtrl SSubGraphGFTrailsSPFTrailsGP

Proof

Step Hyp Ref Expression
1 subgrwlk SSubGraphGFWalksSPFWalksGP
2 1 anim1d SSubGraphGFWalksSPFunF-1FWalksGPFunF-1
3 istrl FTrailsSPFWalksSPFunF-1
4 istrl FTrailsGPFWalksGPFunF-1
5 2 3 4 3imtr4g SSubGraphGFTrailsSPFTrailsGP