Metamath Proof Explorer
		
		
		
		Description:  A subgroup is closed under group subtraction.  (Contributed by Thierry
       Arnoux, 6-Jul-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | subgsubcld.m |  | 
					
						|  |  | subgsubcld.s |  | 
					
						|  |  | subgsubcld.x |  | 
					
						|  |  | subgsubcld.y |  | 
				
					|  | Assertion | subgsubcld |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgsubcld.m |  | 
						
							| 2 |  | subgsubcld.s |  | 
						
							| 3 |  | subgsubcld.x |  | 
						
							| 4 |  | subgsubcld.y |  | 
						
							| 5 | 1 | subgsubcl |  | 
						
							| 6 | 2 3 4 5 | syl3anc |  |