Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iwrdsplit.s | ||
iwrdsplit.f | |||
iwrdsplit.n | |||
Assertion | subiwrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iwrdsplit.s | ||
2 | iwrdsplit.f | ||
3 | iwrdsplit.n | ||
4 | fzo0ssnn0 | ||
5 | fssres | ||
6 | 2 4 5 | sylancl | |
7 | iswrdi | ||
8 | 6 7 | syl |