Metamath Proof Explorer


Theorem subiwrd

Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses iwrdsplit.s φ S V
iwrdsplit.f φ F : 0 S
iwrdsplit.n φ N 0
Assertion subiwrd φ F 0 ..^ N Word S

Proof

Step Hyp Ref Expression
1 iwrdsplit.s φ S V
2 iwrdsplit.f φ F : 0 S
3 iwrdsplit.n φ N 0
4 fzo0ssnn0 0 ..^ N 0
5 fssres F : 0 S 0 ..^ N 0 F 0 ..^ N : 0 ..^ N S
6 2 4 5 sylancl φ F 0 ..^ N : 0 ..^ N S
7 iswrdi F 0 ..^ N : 0 ..^ N S F 0 ..^ N Word S
8 6 7 syl φ F 0 ..^ N Word S