Metamath Proof Explorer


Theorem submaeval

Description: An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a A=NMatR
submafval.q Q=NsubMatR
submafval.b B=BaseA
Assertion submaeval MBKNLNINKJNLIKQMLJ=IMJ

Proof

Step Hyp Ref Expression
1 submafval.a A=NMatR
2 submafval.q Q=NsubMatR
3 submafval.b B=BaseA
4 1 2 3 submaval MBKNLNKQML=iNK,jNLiMj
5 4 3expb MBKNLNKQML=iNK,jNLiMj
6 5 3adant3 MBKNLNINKJNLKQML=iNK,jNLiMj
7 simp3l MBKNLNINKJNLINK
8 simpl3r MBKNLNINKJNLi=IJNL
9 ovexd MBKNLNINKJNLi=Ij=JiMjV
10 oveq12 i=Ij=JiMj=IMJ
11 10 adantl MBKNLNINKJNLi=Ij=JiMj=IMJ
12 7 8 9 11 ovmpodv2 MBKNLNINKJNLKQML=iNK,jNLiMjIKQMLJ=IMJ
13 6 12 mpd MBKNLNINKJNLIKQMLJ=IMJ