Metamath Proof Explorer


Theorem subrfn

Description: Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012)

Ref Expression
Assertion subrfn ACBDA-rBFn

Proof

Step Hyp Ref Expression
1 ovex AxBxV
2 eqid xAxBx=xAxBx
3 1 2 fnmpti xAxBxFn
4 subrval ACBDA-rB=xAxBx
5 4 fneq1d ACBDA-rBFnxAxBxFn
6 3 5 mpbiri ACBDA-rBFn