Metamath Proof Explorer


Theorem subrngacl

Description: A subring is closed under addition. (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngacl.p +˙=+R
Assertion subrngacl Could not format assertion : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) with typecode |-

Proof

Step Hyp Ref Expression
1 subrngacl.p +˙=+R
2 subrngsubg Could not format ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) with typecode |-
3 1 subgcl ASubGrpRXAYAX+˙YA
4 2 3 syl3an1 Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A ) with typecode |-