Metamath Proof Explorer


Theorem subrngmcl

Description: A subgroup is closed under multiplication. (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngmcl.p ·˙=R
Assertion subrngmcl Could not format assertion : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) with typecode |-

Proof

Step Hyp Ref Expression
1 subrngmcl.p ·˙=R
2 eqid R𝑠A=R𝑠A
3 2 subrngrng Could not format ( A e. ( SubRng ` R ) -> ( R |`s A ) e. Rng ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> ( R |`s A ) e. Rng ) with typecode |-
4 3 3ad2ant1 Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( R |`s A ) e. Rng ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( R |`s A ) e. Rng ) with typecode |-
5 simp2 Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> X e. A ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> X e. A ) with typecode |-
6 2 subrngbas Could not format ( A e. ( SubRng ` R ) -> A = ( Base ` ( R |`s A ) ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> A = ( Base ` ( R |`s A ) ) ) with typecode |-
7 6 3ad2ant1 Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> A = ( Base ` ( R |`s A ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> A = ( Base ` ( R |`s A ) ) ) with typecode |-
8 5 7 eleqtrd Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> X e. ( Base ` ( R |`s A ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> X e. ( Base ` ( R |`s A ) ) ) with typecode |-
9 simp3 Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> Y e. A ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> Y e. A ) with typecode |-
10 9 7 eleqtrd Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> Y e. ( Base ` ( R |`s A ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> Y e. ( Base ` ( R |`s A ) ) ) with typecode |-
11 eqid BaseR𝑠A=BaseR𝑠A
12 eqid R𝑠A=R𝑠A
13 11 12 rngcl R𝑠ARngXBaseR𝑠AYBaseR𝑠AXR𝑠AYBaseR𝑠A
14 4 8 10 13 syl3anc Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X ( .r ` ( R |`s A ) ) Y ) e. ( Base ` ( R |`s A ) ) ) with typecode |-
15 2 1 ressmulr Could not format ( A e. ( SubRng ` R ) -> .x. = ( .r ` ( R |`s A ) ) ) : No typesetting found for |- ( A e. ( SubRng ` R ) -> .x. = ( .r ` ( R |`s A ) ) ) with typecode |-
16 15 3ad2ant1 Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> .x. = ( .r ` ( R |`s A ) ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> .x. = ( .r ` ( R |`s A ) ) ) with typecode |-
17 16 oveqd Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) = ( X ( .r ` ( R |`s A ) ) Y ) ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) = ( X ( .r ` ( R |`s A ) ) Y ) ) with typecode |-
18 14 17 7 3eltr4d Could not format ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) : No typesetting found for |- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .x. Y ) e. A ) with typecode |-