Description: A subring is closed under addition. (Contributed by AV, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subrngacl.p | ⊢ + = ( +g ‘ 𝑅 ) | |
Assertion | subrngacl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 + 𝑌 ) ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrngacl.p | ⊢ + = ( +g ‘ 𝑅 ) | |
2 | subrngsubg | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
3 | 1 | subgcl | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 + 𝑌 ) ∈ 𝐴 ) |
4 | 2 3 | syl3an1 | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 + 𝑌 ) ∈ 𝐴 ) |