Metamath Proof Explorer


Theorem subrngacl

Description: A subring is closed under addition. (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngacl.p
|- .+ = ( +g ` R )
Assertion subrngacl
|- ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A )

Proof

Step Hyp Ref Expression
1 subrngacl.p
 |-  .+ = ( +g ` R )
2 subrngsubg
 |-  ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) )
3 1 subgcl
 |-  ( ( A e. ( SubGrp ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A )
4 2 3 syl3an1
 |-  ( ( A e. ( SubRng ` R ) /\ X e. A /\ Y e. A ) -> ( X .+ Y ) e. A )