Metamath Proof Explorer


Theorem subspopn

Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion subspopn J Top A V B J B A B J 𝑡 A

Proof

Step Hyp Ref Expression
1 elrestr J Top A V B J B A J 𝑡 A
2 df-ss B A B A = B
3 eleq1 B A = B B A J 𝑡 A B J 𝑡 A
4 2 3 sylbi B A B A J 𝑡 A B J 𝑡 A
5 1 4 syl5ibcom J Top A V B J B A B J 𝑡 A
6 5 3expa J Top A V B J B A B J 𝑡 A
7 6 impr J Top A V B J B A B J 𝑡 A