Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | subspopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestr | ||
2 | df-ss | ||
3 | eleq1 | ||
4 | 2 3 | sylbi | |
5 | 1 4 | syl5ibcom | |
6 | 5 | 3expa | |
7 | 6 | impr |