Metamath Proof Explorer


Theorem subspopn

Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion subspopn JTopAVBJBABJ𝑡A

Proof

Step Hyp Ref Expression
1 elrestr JTopAVBJBAJ𝑡A
2 df-ss BABA=B
3 eleq1 BA=BBAJ𝑡ABJ𝑡A
4 2 3 sylbi BABAJ𝑡ABJ𝑡A
5 1 4 syl5ibcom JTopAVBJBABJ𝑡A
6 5 3expa JTopAVBJBABJ𝑡A
7 6 impr JTopAVBJBABJ𝑡A