Description: An open set is open in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subspopn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrestr | ||
| 2 | dfss2 | ||
| 3 | eleq1 | ||
| 4 | 2 3 | sylbi | |
| 5 | 1 4 | syl5ibcom | |
| 6 | 5 | 3expa | |
| 7 | 6 | impr |