Metamath Proof Explorer


Theorem subval

Description: Value of subtraction, which is the (unique) element x such that B + x = A . (Contributed by NM, 4-Aug-2007) (Revised by Mario Carneiro, 2-Nov-2013)

Ref Expression
Assertion subval ABAB=ιx|B+x=A

Proof

Step Hyp Ref Expression
1 eqeq2 y=Az+x=yz+x=A
2 1 riotabidv y=Aιx|z+x=y=ιx|z+x=A
3 oveq1 z=Bz+x=B+x
4 3 eqeq1d z=Bz+x=AB+x=A
5 4 riotabidv z=Bιx|z+x=A=ιx|B+x=A
6 df-sub =y,zιx|z+x=y
7 riotaex ιx|B+x=AV
8 2 5 6 7 ovmpo ABAB=ιx|B+x=A