Metamath Proof Explorer


Theorem sucexeloni

Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion sucexeloni AOnsucAVsucAOn

Proof

Step Hyp Ref Expression
1 eloni AOnOrdA
2 ordsuci OrdAOrdsucA
3 1 2 syl AOnOrdsucA
4 elex sucAVsucAV
5 elong sucAVsucAOnOrdsucA
6 5 biimparc OrdsucAsucAVsucAOn
7 3 4 6 syl2an AOnsucAVsucAOn