Metamath Proof Explorer


Theorem sucexeloniOLD

Description: Obsolete version of sucexeloni as of 6-Jan-2025. (Contributed by BTernaryTau, 30-Nov-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sucexeloniOLD AOnsucAVsucAOn

Proof

Step Hyp Ref Expression
1 onelss AOnxAxA
2 velsn xAx=A
3 eqimss x=AxA
4 2 3 sylbi xAxA
5 4 a1i AOnxAxA
6 1 5 orim12d AOnxAxAxAxA
7 df-suc sucA=AA
8 7 eleq2i xsucAxAA
9 elun xAAxAxA
10 8 9 bitr2i xAxAxsucA
11 oridm xAxAxA
12 6 10 11 3imtr3g AOnxsucAxA
13 sssucid AsucA
14 sstr2 xAAsucAxsucA
15 12 13 14 syl6mpi AOnxsucAxsucA
16 15 ralrimiv AOnxsucAxsucA
17 dftr3 TrsucAxsucAxsucA
18 16 17 sylibr AOnTrsucA
19 onss AOnAOn
20 snssi AOnAOn
21 19 20 unssd AOnAAOn
22 7 21 eqsstrid AOnsucAOn
23 ordon OrdOn
24 trssord TrsucAsucAOnOrdOnOrdsucA
25 24 3exp TrsucAsucAOnOrdOnOrdsucA
26 23 25 mpii TrsucAsucAOnOrdsucA
27 18 22 26 sylc AOnOrdsucA
28 27 adantr AOnsucAVOrdsucA
29 elong sucAVsucAOnOrdsucA
30 29 adantl AOnsucAVsucAOnOrdsucA
31 28 30 mpbird AOnsucAVsucAOn