Metamath Proof Explorer


Theorem sucneqoni

Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020)

Ref Expression
Hypotheses sucneqoni.1 X = suc Y
sucneqoni.2 Y On
Assertion sucneqoni X Y

Proof

Step Hyp Ref Expression
1 sucneqoni.1 X = suc Y
2 sucneqoni.2 Y On
3 1 a1i X = suc Y
4 2 a1i Y On
5 3 4 sucneqond X Y
6 5 mptru X Y