Metamath Proof Explorer


Theorem sucneqoni

Description: Inequality of an ordinal set with its successor. Does not use the axiom of regularity. (Contributed by ML, 18-Oct-2020)

Ref Expression
Hypotheses sucneqoni.1 X=sucY
sucneqoni.2 YOn
Assertion sucneqoni XY

Proof

Step Hyp Ref Expression
1 sucneqoni.1 X=sucY
2 sucneqoni.2 YOn
3 1 a1i X=sucY
4 2 a1i YOn
5 3 4 sucneqond XY
6 5 mptru XY