Metamath Proof Explorer


Theorem sucprc

Description: A proper class is its own successor. (Contributed by NM, 3-Apr-1995)

Ref Expression
Assertion sucprc ¬AVsucA=A

Proof

Step Hyp Ref Expression
1 snprc ¬AVA=
2 1 biimpi ¬AVA=
3 2 uneq2d ¬AVAA=A
4 df-suc sucA=AA
5 un0 A=A
6 5 eqcomi A=A
7 3 4 6 3eqtr4g ¬AVsucA=A