Metamath Proof Explorer


Theorem unisucs

Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993) Extract from unisuc . (Revised by BJ, 28-Dec-2024)

Ref Expression
Assertion unisucs AVsucA=AA

Proof

Step Hyp Ref Expression
1 df-suc sucA=AA
2 1 unieqi sucA=AA
3 2 a1i AVsucA=AA
4 uniun AA=AA
5 4 a1i AVAA=AA
6 unisng AVA=A
7 6 uneq2d AVAA=AA
8 3 5 7 3eqtrd AVsucA=AA