Metamath Proof Explorer


Theorem sup00

Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion sup00 supBR=

Proof

Step Hyp Ref Expression
1 df-sup supBR=x|yB¬xRyyyRxzByRz
2 rab0 x|yB¬xRyyyRxzByRz=
3 2 unieqi x|yB¬xRyyyRxzByRz=
4 uni0 =
5 1 3 4 3eqtri supBR=