Metamath Proof Explorer


Theorem supex2g

Description: Existence of supremum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion supex2g ACsupBARV

Proof

Step Hyp Ref Expression
1 df-sup supBAR=xA|yB¬xRyyAyRxzByRz
2 rabexg ACxA|yB¬xRyyAyRxzByRzV
3 2 uniexd ACxA|yB¬xRyyAyRxzByRzV
4 1 3 eqeltrid ACsupBARV