Metamath Proof Explorer


Theorem suprltrp

Description: The supremum of a nonempty bounded set of reals can be approximated from below by elements of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses suprltrp.a φ A
suprltrp.n0 φ A
suprltrp.bnd φ x y A y x
suprltrp.x φ X +
Assertion suprltrp φ z A sup A < X < z

Proof

Step Hyp Ref Expression
1 suprltrp.a φ A
2 suprltrp.n0 φ A
3 suprltrp.bnd φ x y A y x
4 suprltrp.x φ X +
5 suprcl A A x y A y x sup A <
6 1 2 3 5 syl3anc φ sup A <
7 6 4 ltsubrpd φ sup A < X < sup A <
8 4 rpred φ X
9 6 8 resubcld φ sup A < X
10 suprlub A A x y A y x sup A < X sup A < X < sup A < z A sup A < X < z
11 1 2 3 9 10 syl31anc φ sup A < X < sup A < z A sup A < X < z
12 7 11 mpbid φ z A sup A < X < z