Metamath Proof Explorer


Theorem suprubrnmpt

Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses suprubrnmpt.x x φ
suprubrnmpt.b φ x A B
suprubrnmpt.e φ y x A B y
Assertion suprubrnmpt φ x A B sup ran x A B <

Proof

Step Hyp Ref Expression
1 suprubrnmpt.x x φ
2 suprubrnmpt.b φ x A B
3 suprubrnmpt.e φ y x A B y
4 eqid x A B = x A B
5 1 4 2 rnmptssd φ ran x A B
6 5 adantr φ x A ran x A B
7 simpr φ x A x A
8 4 elrnmpt1 x A B B ran x A B
9 7 2 8 syl2anc φ x A B ran x A B
10 9 ne0d φ x A ran x A B
11 1 3 rnmptbdd φ y w ran x A B w y
12 11 adantr φ x A y w ran x A B w y
13 6 10 12 9 suprubd φ x A B sup ran x A B <