Metamath Proof Explorer


Theorem supxrcld

Description: The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis supxrcld.1 φA*
Assertion supxrcld φsupA*<*

Proof

Step Hyp Ref Expression
1 supxrcld.1 φA*
2 supxrcl A*supA*<*
3 1 2 syl φsupA*<*