Metamath Proof Explorer


Theorem supxrltinfxr

Description: The supremum of the empty set is strictly smaller than the infimum of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion supxrltinfxr sup*<<sup*<

Proof

Step Hyp Ref Expression
1 mnfltpnf −∞<+∞
2 xrsup0 sup*<=−∞
3 xrinf0 sup*<=+∞
4 1 2 3 3brtr4i sup*<<sup*<