Metamath Proof Explorer


Theorem swapf2f1oa

Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses swapf1f1o.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1f1o.s S = C × c D
swapf1f1o.t T = D × c C
swapf2f1o.h H = Hom S
swapf2f1o.j J = Hom T
swapf2f1oa.b B = Base S
swapf2f1oa.x φ X B
swapf2f1oa.y φ Y B
Assertion swapf2f1oa φ X P Y : X H Y 1-1 onto O X J O Y

Proof

Step Hyp Ref Expression
1 swapf1f1o.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1f1o.s S = C × c D
3 swapf1f1o.t T = D × c C
4 swapf2f1o.h H = Hom S
5 swapf2f1o.j J = Hom T
6 swapf2f1oa.b B = Base S
7 swapf2f1oa.x φ X B
8 swapf2f1oa.y φ Y B
9 eqid Base C = Base C
10 eqid Base D = Base D
11 2 9 10 xpcbas Base C × Base D = Base S
12 6 11 eqtr4i B = Base C × Base D
13 7 12 eleqtrdi φ X Base C × Base D
14 xp1st X Base C × Base D 1 st X Base C
15 13 14 syl φ 1 st X Base C
16 xp2nd X Base C × Base D 2 nd X Base D
17 13 16 syl φ 2 nd X Base D
18 8 12 eleqtrdi φ Y Base C × Base D
19 xp1st Y Base C × Base D 1 st Y Base C
20 18 19 syl φ 1 st Y Base C
21 xp2nd Y Base C × Base D 2 nd Y Base D
22 18 21 syl φ 2 nd Y Base D
23 1 2 3 4 5 15 17 20 22 swapf2f1o φ 1 st X 2 nd X P 1 st Y 2 nd Y : 1 st X 2 nd X H 1 st Y 2 nd Y 1-1 onto 2 nd X 1 st X J 2 nd Y 1 st Y
24 1st2nd2 X Base C × Base D X = 1 st X 2 nd X
25 13 24 syl φ X = 1 st X 2 nd X
26 1st2nd2 Y Base C × Base D Y = 1 st Y 2 nd Y
27 18 26 syl φ Y = 1 st Y 2 nd Y
28 25 27 oveq12d φ X P Y = 1 st X 2 nd X P 1 st Y 2 nd Y
29 25 27 oveq12d φ X H Y = 1 st X 2 nd X H 1 st Y 2 nd Y
30 1 2 6 7 swapf1a φ O X = 2 nd X 1 st X
31 1 2 6 8 swapf1a φ O Y = 2 nd Y 1 st Y
32 30 31 oveq12d φ O X J O Y = 2 nd X 1 st X J 2 nd Y 1 st Y
33 28 29 32 f1oeq123d φ X P Y : X H Y 1-1 onto O X J O Y 1 st X 2 nd X P 1 st Y 2 nd Y : 1 st X 2 nd X H 1 st Y 2 nd Y 1-1 onto 2 nd X 1 st X J 2 nd Y 1 st Y
34 23 33 mpbird φ X P Y : X H Y 1-1 onto O X J O Y