Metamath Proof Explorer


Theorem swapf2f1oaALT

Description: Alternate proof of swapf2f1oa . (Contributed by Zhi Wang, 8-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses swapf1f1o.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1f1o.s S = C × c D
swapf1f1o.t T = D × c C
swapf2f1o.h H = Hom S
swapf2f1o.j J = Hom T
swapf2f1oa.b B = Base S
swapf2f1oa.x φ X B
swapf2f1oa.y φ Y B
Assertion swapf2f1oaALT φ X P Y : X H Y 1-1 onto O X J O Y

Proof

Step Hyp Ref Expression
1 swapf1f1o.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1f1o.s S = C × c D
3 swapf1f1o.t T = D × c C
4 swapf2f1o.h H = Hom S
5 swapf2f1o.j J = Hom T
6 swapf2f1oa.b B = Base S
7 swapf2f1oa.x φ X B
8 swapf2f1oa.y φ Y B
9 eqid f 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y f -1 = f 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y f -1
10 9 xpcomf1o f 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y f -1 : 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y 1-1 onto 2 nd X Hom D 2 nd Y × 1 st X Hom C 1 st Y
11 4 a1i φ H = Hom S
12 1 2 6 7 8 11 swapf2vala φ X P Y = f X H Y f -1
13 eqid Hom C = Hom C
14 eqid Hom D = Hom D
15 2 6 13 14 4 7 8 xpchom φ X H Y = 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y
16 15 mpteq1d φ f X H Y f -1 = f 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y f -1
17 12 16 eqtrd φ X P Y = f 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y f -1
18 eqid Base T = Base T
19 2 6 7 elxpcbasex1 φ C V
20 2 6 7 elxpcbasex2 φ D V
21 1 2 3 19 20 6 18 swapf1f1o φ O : B 1-1 onto Base T
22 f1of O : B 1-1 onto Base T O : B Base T
23 21 22 syl φ O : B Base T
24 23 7 ffvelcdmd φ O X Base T
25 23 8 ffvelcdmd φ O Y Base T
26 3 18 14 13 5 24 25 xpchom φ O X J O Y = 1 st O X Hom D 1 st O Y × 2 nd O X Hom C 2 nd O Y
27 1 2 6 7 swapf1a φ O X = 2 nd X 1 st X
28 27 fveq2d φ 1 st O X = 1 st 2 nd X 1 st X
29 fvex 2 nd X V
30 fvex 1 st X V
31 29 30 op1st 1 st 2 nd X 1 st X = 2 nd X
32 28 31 eqtrdi φ 1 st O X = 2 nd X
33 1 2 6 8 swapf1a φ O Y = 2 nd Y 1 st Y
34 33 fveq2d φ 1 st O Y = 1 st 2 nd Y 1 st Y
35 fvex 2 nd Y V
36 fvex 1 st Y V
37 35 36 op1st 1 st 2 nd Y 1 st Y = 2 nd Y
38 34 37 eqtrdi φ 1 st O Y = 2 nd Y
39 32 38 oveq12d φ 1 st O X Hom D 1 st O Y = 2 nd X Hom D 2 nd Y
40 27 fveq2d φ 2 nd O X = 2 nd 2 nd X 1 st X
41 29 30 op2nd 2 nd 2 nd X 1 st X = 1 st X
42 40 41 eqtrdi φ 2 nd O X = 1 st X
43 33 fveq2d φ 2 nd O Y = 2 nd 2 nd Y 1 st Y
44 35 36 op2nd 2 nd 2 nd Y 1 st Y = 1 st Y
45 43 44 eqtrdi φ 2 nd O Y = 1 st Y
46 42 45 oveq12d φ 2 nd O X Hom C 2 nd O Y = 1 st X Hom C 1 st Y
47 39 46 xpeq12d φ 1 st O X Hom D 1 st O Y × 2 nd O X Hom C 2 nd O Y = 2 nd X Hom D 2 nd Y × 1 st X Hom C 1 st Y
48 26 47 eqtrd φ O X J O Y = 2 nd X Hom D 2 nd Y × 1 st X Hom C 1 st Y
49 17 15 48 f1oeq123d φ X P Y : X H Y 1-1 onto O X J O Y f 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y f -1 : 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y 1-1 onto 2 nd X Hom D 2 nd Y × 1 st X Hom C 1 st Y
50 10 49 mpbiri φ X P Y : X H Y 1-1 onto O X J O Y