Metamath Proof Explorer


Theorem swapfid

Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfida . (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapfid.c φ C Cat
swapfid.d φ D Cat
swapfid.s S = C × c D
swapfid.t T = D × c C
swapfid.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapfid.x φ X Base C
swapfid.y φ Y Base D
swapfid.1 1 ˙ = Id S
swapfid.i I = Id T
Assertion swapfid φ X Y P X Y 1 ˙ X Y = I O X Y

Proof

Step Hyp Ref Expression
1 swapfid.c φ C Cat
2 swapfid.d φ D Cat
3 swapfid.s S = C × c D
4 swapfid.t T = D × c C
5 swapfid.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
6 swapfid.x φ X Base C
7 swapfid.y φ Y Base D
8 swapfid.1 1 ˙ = Id S
9 swapfid.i I = Id T
10 eqid Base D = Base D
11 eqid Base C = Base C
12 eqid Id D = Id D
13 eqid Id C = Id C
14 4 2 1 10 11 12 13 9 7 6 xpcid φ I Y X = Id D Y Id C X
15 df-ov X O Y = O X Y
16 5 6 7 swapf1 φ X O Y = Y X
17 15 16 eqtr3id φ O X Y = Y X
18 17 fveq2d φ I O X Y = I Y X
19 3 1 2 11 10 13 12 8 6 7 xpcid φ 1 ˙ X Y = Id C X Id D Y
20 19 fveq2d φ X Y P X Y 1 ˙ X Y = X Y P X Y Id C X Id D Y
21 df-ov Id C X X Y P X Y Id D Y = X Y P X Y Id C X Id D Y
22 21 a1i φ Id C X X Y P X Y Id D Y = X Y P X Y Id C X Id D Y
23 eqid Hom C = Hom C
24 11 23 13 1 6 catidcl φ Id C X X Hom C X
25 eqid Hom D = Hom D
26 10 25 12 2 7 catidcl φ Id D Y Y Hom D Y
27 5 6 7 6 7 24 26 swapf2 φ Id C X X Y P X Y Id D Y = Id D Y Id C X
28 20 22 27 3eqtr2d φ X Y P X Y 1 ˙ X Y = Id D Y Id C X
29 14 18 28 3eqtr4rd φ X Y P X Y 1 ˙ X Y = I O X Y