| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swapfid.c |
|- ( ph -> C e. Cat ) |
| 2 |
|
swapfid.d |
|- ( ph -> D e. Cat ) |
| 3 |
|
swapfid.s |
|- S = ( C Xc. D ) |
| 4 |
|
swapfid.t |
|- T = ( D Xc. C ) |
| 5 |
|
swapfid.o |
|- ( ph -> ( C swapF D ) = <. O , P >. ) |
| 6 |
|
swapfid.x |
|- ( ph -> X e. ( Base ` C ) ) |
| 7 |
|
swapfid.y |
|- ( ph -> Y e. ( Base ` D ) ) |
| 8 |
|
swapfid.1 |
|- .1. = ( Id ` S ) |
| 9 |
|
swapfid.i |
|- I = ( Id ` T ) |
| 10 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 12 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 13 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 14 |
4 2 1 10 11 12 13 9 7 6
|
xpcid |
|- ( ph -> ( I ` <. Y , X >. ) = <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. ) |
| 15 |
|
df-ov |
|- ( X O Y ) = ( O ` <. X , Y >. ) |
| 16 |
5 6 7
|
swapf1 |
|- ( ph -> ( X O Y ) = <. Y , X >. ) |
| 17 |
15 16
|
eqtr3id |
|- ( ph -> ( O ` <. X , Y >. ) = <. Y , X >. ) |
| 18 |
17
|
fveq2d |
|- ( ph -> ( I ` ( O ` <. X , Y >. ) ) = ( I ` <. Y , X >. ) ) |
| 19 |
3 1 2 11 10 13 12 8 6 7
|
xpcid |
|- ( ph -> ( .1. ` <. X , Y >. ) = <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` Y ) >. ) |
| 20 |
19
|
fveq2d |
|- ( ph -> ( ( <. X , Y >. P <. X , Y >. ) ` ( .1. ` <. X , Y >. ) ) = ( ( <. X , Y >. P <. X , Y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` Y ) >. ) ) |
| 21 |
|
df-ov |
|- ( ( ( Id ` C ) ` X ) ( <. X , Y >. P <. X , Y >. ) ( ( Id ` D ) ` Y ) ) = ( ( <. X , Y >. P <. X , Y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` Y ) >. ) |
| 22 |
21
|
a1i |
|- ( ph -> ( ( ( Id ` C ) ` X ) ( <. X , Y >. P <. X , Y >. ) ( ( Id ` D ) ` Y ) ) = ( ( <. X , Y >. P <. X , Y >. ) ` <. ( ( Id ` C ) ` X ) , ( ( Id ` D ) ` Y ) >. ) ) |
| 23 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 24 |
11 23 13 1 6
|
catidcl |
|- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 25 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 26 |
10 25 12 2 7
|
catidcl |
|- ( ph -> ( ( Id ` D ) ` Y ) e. ( Y ( Hom ` D ) Y ) ) |
| 27 |
5 6 7 6 7 24 26
|
swapf2 |
|- ( ph -> ( ( ( Id ` C ) ` X ) ( <. X , Y >. P <. X , Y >. ) ( ( Id ` D ) ` Y ) ) = <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. ) |
| 28 |
20 22 27
|
3eqtr2d |
|- ( ph -> ( ( <. X , Y >. P <. X , Y >. ) ` ( .1. ` <. X , Y >. ) ) = <. ( ( Id ` D ) ` Y ) , ( ( Id ` C ) ` X ) >. ) |
| 29 |
14 18 28
|
3eqtr4rd |
|- ( ph -> ( ( <. X , Y >. P <. X , Y >. ) ` ( .1. ` <. X , Y >. ) ) = ( I ` ( O ` <. X , Y >. ) ) ) |