Metamath Proof Explorer


Theorem swapf2vala

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1a.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1a.s S = C × c D
swapf1a.b B = Base S
swapf1a.x φ X B
swapf2a.y φ Y B
swapf2a.h φ H = Hom S
Assertion swapf2vala φ X P Y = f X H Y f -1

Proof

Step Hyp Ref Expression
1 swapf1a.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1a.s S = C × c D
3 swapf1a.b B = Base S
4 swapf1a.x φ X B
5 swapf2a.y φ Y B
6 swapf2a.h φ H = Hom S
7 2 3 4 elxpcbasex1 φ C V
8 2 3 4 elxpcbasex2 φ D V
9 7 8 2 3 6 1 swapf2fval φ P = u B , v B f u H v f -1
10 simprl φ u = X v = Y u = X
11 simprr φ u = X v = Y v = Y
12 10 11 oveq12d φ u = X v = Y u H v = X H Y
13 12 mpteq1d φ u = X v = Y f u H v f -1 = f X H Y f -1
14 ovex X H Y V
15 14 mptex f X H Y f -1 V
16 15 a1i φ f X H Y f -1 V
17 9 13 4 5 16 ovmpod φ X P Y = f X H Y f -1