Metamath Proof Explorer


Theorem swapf2a

Description: The morphism part of the swap functor swaps the morphisms. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Hypotheses swapf1a.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapf1a.s S = C × c D
swapf1a.b B = Base S
swapf1a.x φ X B
swapf2a.y φ Y B
swapf2a.h φ H = Hom S
swapf2a.f φ F X H Y
Assertion swapf2a φ X P Y F = 2 nd F 1 st F

Proof

Step Hyp Ref Expression
1 swapf1a.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
2 swapf1a.s S = C × c D
3 swapf1a.b B = Base S
4 swapf1a.x φ X B
5 swapf2a.y φ Y B
6 swapf2a.h φ H = Hom S
7 swapf2a.f φ F X H Y
8 1 2 3 4 5 6 swapf2vala φ X P Y = f X H Y f -1
9 simpr φ f = F f = F
10 9 sneqd φ f = F f = F
11 10 cnveqd φ f = F f -1 = F -1
12 11 unieqd φ f = F f -1 = F -1
13 6 oveqd φ X H Y = X Hom S Y
14 eqid Hom C = Hom C
15 eqid Hom D = Hom D
16 eqid Hom S = Hom S
17 2 3 14 15 16 4 5 xpchom φ X Hom S Y = 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y
18 13 17 eqtrd φ X H Y = 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y
19 7 18 eleqtrd φ F 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y
20 2nd1st F 1 st X Hom C 1 st Y × 2 nd X Hom D 2 nd Y F -1 = 2 nd F 1 st F
21 19 20 syl φ F -1 = 2 nd F 1 st F
22 21 adantr φ f = F F -1 = 2 nd F 1 st F
23 12 22 eqtrd φ f = F f -1 = 2 nd F 1 st F
24 opex 2 nd F 1 st F V
25 24 a1i φ 2 nd F 1 st F V
26 8 23 7 25 fvmptd φ X P Y F = 2 nd F 1 st F