Metamath Proof Explorer


Theorem swapfida

Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also swapfid . (Contributed by Zhi Wang, 8-Oct-2025)

Ref Expression
Hypotheses swapfid.c φ C Cat
swapfid.d φ D Cat
swapfid.s S = C × c D
swapfid.t T = D × c C
swapfid.o No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
swapfida.b B = Base S
swapfida.x φ X B
swapfida.1 1 ˙ = Id S
swapfida.i I = Id T
Assertion swapfida φ X P X 1 ˙ X = I O X

Proof

Step Hyp Ref Expression
1 swapfid.c φ C Cat
2 swapfid.d φ D Cat
3 swapfid.s S = C × c D
4 swapfid.t T = D × c C
5 swapfid.o Could not format ( ph -> ( C swapF D ) = <. O , P >. ) : No typesetting found for |- ( ph -> ( C swapF D ) = <. O , P >. ) with typecode |-
6 swapfida.b B = Base S
7 swapfida.x φ X B
8 swapfida.1 1 ˙ = Id S
9 swapfida.i I = Id T
10 eqid Base C = Base C
11 eqid Base D = Base D
12 3 10 11 xpcbas Base C × Base D = Base S
13 6 12 eqtr4i B = Base C × Base D
14 7 13 eleqtrdi φ X Base C × Base D
15 xp1st X Base C × Base D 1 st X Base C
16 14 15 syl φ 1 st X Base C
17 xp2nd X Base C × Base D 2 nd X Base D
18 14 17 syl φ 2 nd X Base D
19 1 2 3 4 5 16 18 8 9 swapfid φ 1 st X 2 nd X P 1 st X 2 nd X 1 ˙ 1 st X 2 nd X = I O 1 st X 2 nd X
20 1st2nd2 X Base C × Base D X = 1 st X 2 nd X
21 14 20 syl φ X = 1 st X 2 nd X
22 21 21 oveq12d φ X P X = 1 st X 2 nd X P 1 st X 2 nd X
23 21 fveq2d φ 1 ˙ X = 1 ˙ 1 st X 2 nd X
24 22 23 fveq12d φ X P X 1 ˙ X = 1 st X 2 nd X P 1 st X 2 nd X 1 ˙ 1 st X 2 nd X
25 21 fveq2d φ O X = O 1 st X 2 nd X
26 25 fveq2d φ I O X = I O 1 st X 2 nd X
27 19 24 26 3eqtr4d φ X P X 1 ˙ X = I O X