Metamath Proof Explorer


Theorem swrdlen

Description: Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Assertion swrdlen SWordAF0LL0SSsubstrFL=LF

Proof

Step Hyp Ref Expression
1 fvex Sx+FV
2 eqid x0..^LFSx+F=x0..^LFSx+F
3 1 2 fnmpti x0..^LFSx+FFn0..^LF
4 swrdval2 SWordAF0LL0SSsubstrFL=x0..^LFSx+F
5 4 fneq1d SWordAF0LL0SSsubstrFLFn0..^LFx0..^LFSx+FFn0..^LF
6 3 5 mpbiri SWordAF0LL0SSsubstrFLFn0..^LF
7 hashfn SsubstrFLFn0..^LFSsubstrFL=0..^LF
8 6 7 syl SWordAF0LL0SSsubstrFL=0..^LF
9 fznn0sub F0LLF0
10 9 3ad2ant2 SWordAF0LL0SLF0
11 hashfzo0 LF00..^LF=LF
12 10 11 syl SWordAF0LL0S0..^LF=LF
13 8 12 eqtrd SWordAF0LL0SSsubstrFL=LF