Metamath Proof Explorer


Theorem syl2im

Description: Replace two antecedents. Implication-only version of syl2an . (Contributed by Wolf Lammen, 14-May-2013)

Ref Expression
Hypotheses syl2im.1 φψ
syl2im.2 χθ
syl2im.3 ψθτ
Assertion syl2im φχτ

Proof

Step Hyp Ref Expression
1 syl2im.1 φψ
2 syl2im.2 χθ
3 syl2im.3 ψθτ
4 2 3 syl5 ψχτ
5 1 4 syl φχτ