Metamath Proof Explorer


Theorem syl333anc

Description: A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φψ
syl3anc.2 φχ
syl3anc.3 φθ
syl3Xanc.4 φτ
syl23anc.5 φη
syl33anc.6 φζ
syl133anc.7 φσ
syl233anc.8 φρ
syl333anc.9 φμ
syl333anc.10 ψχθτηζσρμλ
Assertion syl333anc φλ

Proof

Step Hyp Ref Expression
1 syl3anc.1 φψ
2 syl3anc.2 φχ
3 syl3anc.3 φθ
4 syl3Xanc.4 φτ
5 syl23anc.5 φη
6 syl33anc.6 φζ
7 syl133anc.7 φσ
8 syl233anc.8 φρ
9 syl333anc.9 φμ
10 syl333anc.10 ψχθτηζσρμλ
11 7 8 9 3jca φσρμ
12 1 2 3 4 5 6 11 10 syl331anc φλ