Metamath Proof Explorer
Description: A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012)
|
|
Ref |
Expression |
|
Hypotheses |
syl3anc.1 |
|
|
|
syl3anc.2 |
|
|
|
syl3anc.3 |
|
|
|
syl3Xanc.4 |
|
|
|
syl23anc.5 |
|
|
|
syl33anc.6 |
|
|
|
syl133anc.7 |
|
|
|
syl233anc.8 |
|
|
|
syl333anc.9 |
|
|
|
syl333anc.10 |
|
|
Assertion |
syl333anc |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
syl3anc.1 |
|
| 2 |
|
syl3anc.2 |
|
| 3 |
|
syl3anc.3 |
|
| 4 |
|
syl3Xanc.4 |
|
| 5 |
|
syl23anc.5 |
|
| 6 |
|
syl33anc.6 |
|
| 7 |
|
syl133anc.7 |
|
| 8 |
|
syl233anc.8 |
|
| 9 |
|
syl333anc.9 |
|
| 10 |
|
syl333anc.10 |
|
| 11 |
7 8 9
|
3jca |
|
| 12 |
1 2 3 4 5 6 11 10
|
syl331anc |
|