Metamath Proof Explorer


Theorem syl3c

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011)

Ref Expression
Hypotheses syl3c.1 φ ψ
syl3c.2 φ χ
syl3c.3 φ θ
syl3c.4 ψ χ θ τ
Assertion syl3c φ τ

Proof

Step Hyp Ref Expression
1 syl3c.1 φ ψ
2 syl3c.2 φ χ
3 syl3c.3 φ θ
4 syl3c.4 ψ χ θ τ
5 1 2 4 sylc φ θ τ
6 3 5 mpd φ τ